電着塗装における 均一塗装性向上技術

The Technology of Improving on Film Tickness Uniformity in Electrocoatings.

製品開発研究所 第6部 御堂河内奨 Susumu Midogohchi

技術研究所 第4部 **岡保宏** Yasuhiro Oka

製品開発研究所 第6部 **根本幸宏** Yukihiro Nemoto

1.はじめに

電着塗装は、他の塗装システムに比較して袋部構造を有 する被塗物内部への塗装性(付き廻り性)に優れ、かつ塗 膜の防食性が卓越する点より自動車の下塗り塗装として現 在一般的に用いられている。

しかしながら幾重にも補強部材が重なり合った構造部材 内部などの電気の流れにくい箇所では、電流密度が低下し て塗膜が析出し難くなり防錆性低下の原因となる。このため 袋構造内部の膜厚を確保するために塗装条件面の工夫が なされているが、外板面膜厚を厚く塗装せざるを得ないのが 現状であり、塗料使用量の増大を招いている¹⁾。

この課題に対して外板面膜厚を抑制しながら内板面膜 厚を向上させる「均一塗装性」の技術確立を目的として電 着塗料面からの研究を実施した。

今回、車両開発や塗装条件設定の方策として現在種々 の研究が行われている膜厚分布計算シミュレーション手法 ^{2,3,3,4})を適用して、電着塗装における均一塗装性向上化 に関する塗料要因の明確化と、またそれらの知見より高均 一塗装性モデル塗料を設計⁵⁰し、4枚ボックス簡易形状被 塗物モデルでの均一塗装性向上化の検証を行ったので、 本報告書ではその詳細を述べる。

2. 膜厚分布解析モデル

本研究に用いた市販の膜厚分布計算ソフト⁶⁾は電解槽 の電流分布解析プログラム^{7,8)}を基本とした上に電着塗装 プロセスの特徴、すなわち通電により被塗物表面において 水の電気分解が起きてOHイオンが生成し(OHイオンの一 部は拡散により被塗物表面近傍から消失)、そのOHイオン がある一定濃度以上になると塗料が析出する挙動(**図1**) が新規パラメータとして導入されており、塗料の電気伝導度 や塗装条件などの他に電着塗料の析出メカニズムに対応 する析出パラメータの決定が必要となる²。

以下に定電圧塗装および定電流塗装実験によるパラメ ータ決定の考え方と測定例を示す。またパラメータ決定の塗 装実験条件を**表1**に示す。

図1 塗膜析出機構とパラメータの関係モデル図

容量	3 L		
搅拌条件	500rpm (定電圧), 0rpm (定電流)		
定電圧	50,100,150,200,250,280V		
定電流	0.1 , 0.2 , 0.3 , 0.4 , 0.5mA/cm ²		
温 度	28		
時間	180 秒(30秒で昇圧)		
塗装面積	塗装面積 500mm ²		
極間距離	極間距離 150mm		
極比	- / + =1/3		

表1 パラメータ設定塗装条件

3. パラメータの設定

3.1 単位クーロン当たりの塗料析出量と析出無効クー ロン量

定電圧塗装実験によりクーロン量とそれによる塗料析出 量の変化を実測し、この測定データに回帰分析を適用して その傾きより単位クーロン当たりの塗料析出量(析出効率) を、またX切片より析出無効クーロン量を決定した(図2)。

3.2 拡散消費と析出開始クーロン量

定電流塗装実験での電流密度と析出開始時間を実測 し、この測定データに回帰分析を適用して拡散消費電流密 度を決定した。また、これと通電時間の積により求められる拡 散消費クーロン量と第31節で決定した析出無効クーロン量 より式1にて析出開始クーロン量を決定した。

析出開始クーロン量 = 析出無効クーロン量 - 拡散消費 (式1) クーロン量 但し、拡散消費クーロン量=拡散消費電流密度×通電時間

3.3 単位膜厚当たりの分極抵抗

定電圧塗装実験により塗装膜厚(塗料析出量)と分極抵 抗を実測し、この測定データに回帰分析を適用した傾きより 単位膜厚当たりの分極抵抗を決定した(図3)。

膜厚と分極抵抗の関係

4.実測膜厚分布と計算結果比較

単一平板での実測膜厚分布と第3章に示した考え方に より測定したパラメータによる計算膜厚結果との比較例を図 4に示す。また図5に示す4枚ボックス簡易形状被塗物モデ ルでの実測膜厚分布パターンと計算膜厚分布パターンとの 比較を図6に示す。これより単一平板での実測膜厚分布、お よび4枚ボックス簡易形状被塗物モデルでの膜厚分布パタ ーンに関して良い一致性が認められ、また電流カーブ(図7、 8、9、10)および流動電位カーブ(図11、12、13、14)に関 しても実測値に対して計算結果は良く近似していることが 判ったので、本手法を適用して以下の膜厚均一化に対する 塗料要因の解析を実施した。但し、上記手法は、現時点、 膜厚分布パターンなどでの良い一致性は認められるが、絶 対値に関しては4µm程度のズレがあり、今後の精度向上を

必要とする。この膜厚値のズレ発生原因としては塗装時に 発生するジュール熱など撹拌条件の影響が考えられ、これ ら要因の寄与度の解析とパラメータ導入方法の確立が課 題と考える。

図5 4枚ボックス簡易形状被塗物モデル

図6 4枚ボックスでの実測膜厚と計算膜厚の比較

図8 電流カーブ比較(C面)

図 10 電流カーブ比較(G面)

図 11 流動電位カーブ比較(A面)

5. 電着塗料の均一塗装性向上化への影響 要因解析

塗料設計に向けて、本膜厚分布解析プログラムを適用し たシミュレーション手法による、膜厚の均一化に対する塗料 要因の解析結果を以下に示す。

5.1 単位クーロン当たりの塗料析出量

単位クーロン当たりの塗料析出量の変動による4枚ボック ス簡易被塗物モデルでの膜厚分布パターン解析結果を図 15に示す。この図から、単位クーロン当たりの析出量の増大 により塗装面全体が増膜することが解る。内板面膜厚の向 上に関しては有効であるが外板面膜厚の抑制が必要とな る。

図 15 単位クーロン当たりの塗料析出量の影響

図 12 流動電位カーブ比較(C面)

図13 流動電位カーブ比較(E面)

5.2 析出無効クーロン量

析出無効クーロン量の変動による4枚ボックス簡易被塗物モデルによる膜厚分布パターン解析結果を図16に示す。 析出無効クーロン量の影響は電流密度低下が発生し易い 内板面において大きく、析出無効クーロン量が小さくなるに 伴い内板面膜厚の向上(増膜)が認められる。またそれによ る外板面膜厚の変化は殆ど認められず内板面膜厚の厚膜 化に最も有効な手法と言える。

図 16 析出無効クーロン量の影響

図 17 単位膜厚当たりの分極抵抗の影響

5.3 単位膜厚当たりの分極抵抗

単位膜厚当たりの分極抵抗の変動による4枚ボックス簡 易被塗物モデルでの膜厚分布パターン解析結果を図17に 示す。これより、単位膜厚当たりの分極抵抗の上昇により膜 厚は全体に低下傾向にあり、特にその影響は外板面に近い ほど大きく、外板面膜厚の薄膜化に対して有効な手法と言える。

以上の結果より、付き廻り膜厚分布の均一化として以下 の手法を選出した。

①外板膜厚の抑制(薄膜化)

単位膜厚当たりの分極抵抗の向上により外板面での抵 抗を早く上昇させ薄膜化を図る。

また本手法では内部への電流の回り込みが速くなるため、内板面への通電時間が相対的に長くなり、内板膜厚低下の割合を少なくすることができる。

②内板膜厚の向上(増膜化)

単位クーロン当たりの塗料析出量の向上、および析出無 効クーロン量の低下により、内板面での析出効率を上げ ることで内板面膜厚の向上(厚膜化を図る。 但し単位クーロン当たりの塗料析出量の向上化は外板 面膜厚の厚膜化を伴うため単位膜厚当たりの分極抵抗 の向上化手法との併用が不可欠と言える。

6. 高均一塗装性モデル電着塗料の設計と 析出特性

以上の解析結果より単位クーロン当たりの塗料析出量の 向上単位膜厚当たりの分極抵抗の向上、初期析出速度 の向上を主な狙いとして高均一塗装性モデル電着塗料の 設計を行った。図18に設計の考え方と方策の概要を示す。

7. 高均一塗装性モデル塗料の析出特性と つき廻り性の検証

設計した高均一塗装性モデル塗料の析出特性を表2、 図19、20に示す。

	モデル塗料	通常タイプ
単 位クーロン当たりの塗料析出量 (mg / C)	77.4	55.7
析 出 無 効 ク ー ロ ン 量 (C / cm²)	347	441
単位膜厚当たりの分極抵抗 (k cm²/µm)	84.1	49.3

図 18 高均一塗装性モデル塗料の設計の考え方と方策の概要

図 20 膜厚と分極抵抗の関係

図 21 塗装浴温度と膜厚の関係

図 22 4枚ボックスでの実測膜厚分布

図18に示した考え方、主な方策(手法)の適用によ)、通 常タイプに比較して単位クーロン当たりの塗料析出量、およ び単位膜厚当たりの析出塗膜の分極抵抗が高く、かつ析 出無効クーロン量が少なくなっていることが判る。これら手法 による単位膜厚当たりの分極抵抗の向上化は、電着塗装膜 厚の塗装浴温依存性に対しても鈍化効果があり、塗装管理 面でも外板膜厚の薄膜均一化の強化が図れることが解る (図21)。また図22に示す高均一塗装性モデル塗料での 4枚ボックス簡易形状被塗物モデルの実測膜厚分布検証 結果より、単位膜厚当たりの分極抵抗の向上による外板面 膜厚の薄膜化と単位クーロン当たりの塗料析出量の向上お よび析出無効クーロン量の低下による内板面膜厚の増膜化 の両立化が図れていることが確認でき、本手法の均一塗装 性向上に対する有効性を見出せた。

8. おわりに

電着塗料の膜厚分布計算シミュレーション手法を適用し、 定性的ではあるが均一塗装性の向上化に関する塗料要因 の解析を行い、これに基づいた高均一塗装性モデル塗料を 設計し、解析結果の検証とその有効性を見出した。

また本研究で試みた膜厚分布計算シミュレーション技術 は塗料要因の解析以外にも車両開発への応用が期待され ており、今後、電着塗装過程で発生するジュール熱の影響 の寄与率を解析し、またその計算方法を確立してシミュレー ション精度の向上、シミュレーション適用領域の把握およびそ の拡大を計ることが重要課題と考える。

9. 参考文献

- 1)本沢剣;TOYOTA Technical Review,50[2] p.78 (2000).
- 2)國見均、木村均、風間重徳;塗装工学、24、p.94 (1989)
- 3) 佐野哲、薄田茂;自動車技術会学術講演会前刷集、 933、p.85(1993).
- 4)竹内寿浩、今中正、渡邊弘和;HONDA R&D Technical Review、8、p.138(1996).
- 5)御堂河内奨、冨永章、加藤清、根本幸宏;第17回塗 料·塗装研究発表会講演要旨集(2001)
- 6)小原勝彦、和田崇;表面技術協会第102回講演大会 要旨集、p.84(2000)
- 7)小原勝彦、畑瀬博、櫻井達美;表面技術、47、p.751 (1996)
- 8)小原勝彦;表面技術、50、p.416(1999).

が技術開発